Abstract

The Gram-negative plant pathogen Xanthomonas campestris pv. campestris (Xcc) is the causative agent of black rot in crucifers, a disease that causes tremendous agricultural loss. In this study, the Xcc galE gene was characterized. Sequence and mutational analysis demonstrated that the Xcc galE encodes a UDP-galactose 4-epimerase (EC 5.1.3.2), which catalyzes the interconversion of UDP-galactose and UDP-glucose. Alanine substitution of the putative catalytic residues (Ser124, Tyr147, and Lys151) of GalE caused loss of epimerase activity. Further study showed that the Xcc galE mutant had reduced biofilm formation ability. Furthermore, reporter assays revealed that galE transcription exhibits a distinct expression profile under different culture conditions, is subject to catabolite repression, and is positively regulated by Clp and RpfF. In addition, the galE transcription initiation site was mapped. This is the first time that UDP-galactose 4-epimerase has been characterized in the crucifer pathogen Xcc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call