Abstract

Abstract The frequency of B cells in Peyer's patches from normal BDF1 and sheep red blood cell (SRBC)-fed BDF1 mice that could respond to antigenic determinants on SRBC and trinitrophenyl (TNP) was determined using an in vitro system of limiting dilution analysis. In normal mice, one B cell in 1.9 × 104 Peyer's patch cells could be induced to an anti-SRBC response and one B cell in 3.6 × 104 Peyer's patch cells could be induced to an anti-TNP response. The frequency of B cells capable of responding to SRBC in normal mice was similar in Peyer's patches and spleen. However, after feeding mice SRBC for 3 weeks, there was a 6-fold reduction in the frequency of B cells in Peyer's patches capable of responding to SRBC but no change in the frequency of B cells capable of responding to TNP. The average clone size of Peyer's patch B cells responding to SRBC was similar in normal and SRBC-fed mice. Although antigen-feeding does not stimulate Peyer's patch B cells in situ to humoral antibody synthesis, antigen-feeding can markedly alter the reactivity of the antigen-sensitive cell population in Peyer's patches. We previously demonstrated that T cells in Peyer's patches could be specifically carrier primed for helper function by SRBC feeding. We have now demonstrated that antigen-feeding reduced significantly the frequency of B cells in Peyer's patches capable of responding to the fed antigen. Peyer's patches appear to serve an important function as a sampling site for intestinal antigens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.