Abstract
Human TASK-3 (hTASK-3) is a recently identified member of the two-pore domain potassium channel (2PDKC) family which in man is predominantly expressed in the cerebellum. Previous preliminary examination of this channel indicates that when expressed in Xenopus oocytes, it produces a K + selective background conductance and consequent shift in resting membrane potential, thus mimicking other 2PDKC. Here we describe some additional functional and pharmacological aspects of hTASK-3-mediated conductances expressed in both Xenopus oocytes and HEK293 cells. hTASK-3 expression produces steady-state currents that approximate Goldman–Hodgkin–Katz behaviour with respect to membrane potential. Despite this, voltage steps from −80 mV to potentials >∼−20 mV induce currents that exhibit a clear time-dependent increase in current amplitude. Kinetically, this increase in current was well fit by a single exponential, the time constant of which was ∼10 ms and appeared independent of test potential, between −20 and +80 mV. In HEK293 cells hTASK-3 currents were inhibited by extracellular acidosis with a mid-point for inhibition of pH 6.4. Furthermore, the activity of TASK-3 was potentiated by the volatile anaesthetic halothane but inhibited by the local anaesthetic bupivacaine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.