Abstract

We extend Donsker’s approximation of Brownian motion to fractional Brownian motion with Hurst exponent H∈(0,1) and to Volterra-like processes. Some of the most relevant consequences of our ‘rough Donsker (rDonsker) Theorem’ are convergence results for discrete approximations of a large class of rough models. This justifies the validity of simple and easy-to-implement Monte-Carlo methods, for which we provide detailed numerical recipes. We test these against the current benchmark Hybrid scheme and find remarkable agreement (for a large range of values of H). This rDonsker Theorem further provides a weak convergence proof for the Hybrid scheme itself, and allows to construct binomial trees for rough volatility models, the first available scheme (in the rough volatility context) for early exercise options such as American or Bermudan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.