Abstract

In this paper, we prove a functional central limit theorem (FCLT) for a stochastic epidemic model with varying infectivity and general infectious periods recently introduced in R. Forien et al. [Epidemic models with varying infectivity, SIAM J. Appl. Math. 81 (2021), pp. 1893–1930]. The infectivity process (total force of infection at each time) is composed of the independent infectivity random functions of each infectious individual, which starts at the time of infection. These infectivity random functions induce the infectious periods (as well as exposed, recovered or immune periods in full generality), whose probability distributions can be very general. The epidemic model includes the generalized non–Markovian SIR, SEIR, SIS, SIRS models with infection-age dependent infectivity. In the FCLTs for the generalized SIR and SEIR models, the limits of the diffusion-scaled fluctuations of the infectivity and susceptible processes are a unique solution to a two-dimensional Gaussian-driven stochastic Volterra integral equations, and then given these solutions, the limits for the infected (exposed/infectious) and recovered processes are Gaussian processes expressed in terms of the solutions to those stochastic Volterra integral equations. We also present the FCLTs for the generalized SIS and SIRS models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.