Abstract
Cationic and thermo-responsive polymer brushes were grafted from the surface of cellulose nanocrystals. Di(ethylene glycol) methyl ether methacrylate (MEO2MA) and poly(oligoethylene glycol) methyl ether acrylate (OEGMA300) and (2-methacryloyloxyethyl) trimethylammonium chloride (DMC) were grafted from cellulose nanocrystals (CNCs) via free radical polymerization. The CNC-g-POEGMA (CP) possessed a tunable lower critical solution temperature (LCST) of about 50 °C, and cloud point measurements confirmed that the LCST of the nanoparticles could be manipulated within the range of 40−47 °C by adjusting the DMC content. The salt effect was also investigated, and the results revealed a typical salting-out effect for the CNC-g-POEGMA after the introduction of KCl. On the other hand, the CNC-g-POEGMA-g-DMC (CPD) copolymers displayed two salt-responsive characteristics; polyelectrolyte effect at lower salt concentrations, followed by the salting-out effect at higher salt concentrations, which is dependent on the DMC content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.