Abstract
Let $-A$ be the generator of a bounded $C_0$-group or of a positive contraction semigroup, respectively, on $L^p(\Omega,\mu,Y)$, where $(\Omega,\mu)$ is measure space, $Y$ is a Banach space of class $\cal H \cal T$ and $1<p<\infty$. If $Y=\mathbb{C}$, it is shown by means of the transference principle due to Coifman and Weiss that $A$ admits an $H^\infty$-calculus on each double cone $C_\theta=\{\lambda\in\mathbb{C}\backslash\{0\}:|\arg\lambda\pm\pi/2|<\theta\}$, where $\theta>0$ and on each sector $\Sigma_\theta=\{\lambda\in\mathbb{C}\backslash\{0\}:|\arg\lambda|<\theta\}$ with $\theta<\pi/2$, respectively. Several extensions of these results to the vector-valued case $L^p(\Omega,\mu,Y)$ are presented. In particular, let $-A$ be the generator of a bounded group on a Banach spaces of class $\cal H\cal T$. Then it is shown that $A$ admits an $H^\infty$-calculus on each double cone $C_\theta$, $\theta > 0$, and that $-A^2$ admits an $H^\infty$-calculus on each sector $\Sigma_\theta$, where $\theta > 0$. Applications of these results deal with elliptic boundary value problems on cylindrical domains and on domains with non smooth boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.