Abstract

Brain network classification using resting-state functional magnetic resonance imaging (rs-fMRI) is an effective analytical method for diagnosing brain diseases. In recent years, brain network classification methods based on deep learning have attracted increasing attention. However, these methods only consider the spatial topological characteristics of the brain network but ignore its proximity relationships in semantic space. To overcome this problem, we propose a novel brain network classification method based on deep graph hashing learning named BNC-DGHL. Specifically, we first extract the deep features of the brain network and then learn a graph hash function based on clinical phenotype labels and the similarity of diagnostic labels. Secondly, we use the learned graph hash function to convert deep features into hash codes, which can maintain the original semantic spatial relationships. Finally, we calculate the distance between hash codes to obtain the predicted category of the brain network. Experimental results on ABIDE I, ABIDE II, and ADHD-200 datasets demonstrate that our method achieves better classification performance of brain diseases compared with some state-of-the-art methods, and the abnormal functional connectivities between brain regions identified may serve as biomarkers associated with related brain diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.