Abstract

Bone tissue engineering could provide an alternative to conventional treatments for fracture nonunion, spinal fusion, joint replacement, and pathological loss of bone. However, this approach will require a biocompatible matrix to allow progenitor cell delivery and support tissue invasion. The construct must also support physiological loads as it degrades to allow the regenerated tissue to bear an increasing load. To meet these complex requirements, we have employed topology-optimized design and solid free-form fabrication to manufacture biodegradable poly(propylene fumarate)/beta-tricalcium phosphate composites. These scaffolds were seeded with primary human fibroblasts transduced with an adenovirus expressing bone morphogenetic protein-7 and implanted subcutaneously in mice. Specimens were evaluated by microcomputed tomography, compressive testing, and histological staining. New bone was localized on the scaffold surface and closely followed its designed contours. Furthermore, the total stiffness of the constructs was retained for up to 12 weeks after implantation, as scaffold degradation and tissue invasion took place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call