Abstract

The self-assembly of functional block copolymers (BCPs) into dispersed nanoparticles is a powerful technique for the preparation of novel delivery vehicles with precise control of morphology and architecture. Well-defined BCPs containing an alkyne-functional, biodegradable polylactide (PLA) block were synthesized and conjugated with azide-functional coumarin dyes via copper catalyzed azide alkyne cycloaddition 'click' chemistry. Self-assembled nanoparticles with internal nanophase-separated morphologies could then be accessed by carefully controlling the composition of the BCPs and release of the covalently attached model payload was shown to occur under physiological conditions via the degradation of the PLA scaffold. These results demonstrate the potential of self-assembled nanoparticles as modular delivery vehicles with multiple functionalities, nanostructures, and compartmentalized internal morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call