Abstract

Crude wood fibers represent a wide class of renewable resources. The surface modification of such materials via covalent grafting of polymer offers new surface properties with non-leaching coating. The grafting of the polymer chains was achieved by surface-initiated controlled radical polymerization through a grafted xanthate chain transfer agent. Macromolecular design via interchange of xanthate (MADIX) technique was chosen to graft poly(vinyl acetate), polystyrene, poly( n-butyl acrylate) and poly(4-vinylbenzyl chloride)-polystyrene amphiphilic cationic copolymers. Water contact angle measurements highlighted the hydrophobization of the wood fiber surface with a nanoscaled polymer monolayer indicating the appropriate coverage of the fiber. X-ray photoelectron spectroscopy showed the successful grafting of the polymer after drastic washing procedure. The quaternization of the grafted polystyrene- co-poly(4-vinyl benzyl chloride) copolymers with tertiary amine allows the introduction of biocide quaternary ammonium functions while preserving the hydrophobic character of the modified wood fiber when introducing a long alkyl chain in the statistical copolymer. Finally, the cationic copolymer was subjected to Coniophora Puteana to evaluate its propensity to limit the fungi expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call