Abstract

Experiments were carried out to see if isolated inner arm dyneins could functionally combine with axonemes lacking them. High-salt extract from the axoneme of Chlamydomonas oda1 mutant lacking outer-arm dynein was added to the demembranated cell models of ida1oda1 lacking inner arm dynein f (dynein I1) and outer arm dynein. After incubation, the originally paralyzed ida1oda1 axonemes recovered the ability to beat in the presence of ATP. A similar good motility recovery after incubation with crude oda1 extract was observed in ida9oda2 lacking outer arm and inner arm dynein c, and partial recovery in ida4oda1 lacking outer arm and inner arm species a, c, and d. These observations indicate that dynein f and dynein c can functionally bind with mutant axonemes lacking them. A method for combining isolated inner arm dyneins with axonemes in a functionally active manner should provide a powerful experimental tool with which to study the mechanism of beating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call