Abstract

We study the spectrum of the integrable open XXX Heisenberg spin chain subject to non-diagonal boundary magnetic fields. The spectral problem for this model can be formulated in terms of functional equations obtained by separation of variables or, equivalently, from the fusion of transfer matrices. For generic boundary conditions the eigenvalues cannot be obtained from the solution of finitely many algebraic Bethe equations. Based on careful finite size studies of the analytic properties of the underlying hierarchy of transfer matrices we devise two approaches to analyze the functional equations. First we introduce a truncation method leading to Bethe-type equations determining the energy spectrum of the spin chain. In a second approach, the hierarchy of functional equations is mapped to an infinite system of nonlinear integral equations of TBA type. The two schemes have complementary ranges of applicability and facilitate an efficient numerical analysis for a wide range of boundary parameters. Some data are presented on the finite-size corrections to the energy of the state which evolves into the antiferromagnetic ground state in the limit of parallel boundary fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call