Abstract

Pupil-size changes are typically associated with the pupil light response (PLR), where they are driven by the physical entry of light into the eye. However, pupil-size changes are also influenced by various cognitive processes, where they are driven by higher-level cognition. For example, the strength of the PLR is not solely affected by physical properties of the light but also by cognitive factors, such as whether the source of light is attended or not, which results in an increase or decrease in the strength of the PLR. Surprisingly, although cognitively driven pupil-size changes have been the focus of extensive research, their possible functions are rarely discussed. Here we consider the relative (dis)advantages of small versus large pupils in different situations from a theoretical point of view, and compare these to empirical results showing how pupil size actually changes in these situations. Based on this, we suggest that cognitively driven pupil-size changes optimize vision either through preparation, embodied representations, or a differential emphasis on central or peripheral vision. More generally, we argue that cognitively driven pupil-size changes are a form of sensory tuning: a subtle adjustment of the eyes to optimize vision for the current situation and the immediate future. This article is categorized under: Neuroscience > Cognition Neuroscience > Physiology Neuroscience > Behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call