Abstract

Biocompatible adhesive films are important for many applications (e.g., wearable devices, implantable devices, and attachable sensors). In particular, achieving self-adhesion on one side of a film with biocompatible materials is a compelling goal in adhesion science. Herein, we report a simple and easy manufacturing process using water-soluble hyaluronic acid (HA) that allows adhesiveness on only one side using binary polymer mixtures based on a phase-separation strategy with an elastomer. HA influx allows for the entangled polymer chains of the elastomer to spontaneously deform, permitting tunable mechanical elasticity, conformability, and adhesion. The proposed adhesive film enables the transfer of nanopatterning and the attachment of various surfaces without the use of additional chemicals. In addition, the film can be used for measuring epidermal biopotential and for skin fixation of drug devices. Therefore, the developed facile asymmetric adhesion can block the interferences of other materials on the unnecessary adhesion side, providing considerable potential for the development of functional, multifunctional, and smart bioadhesives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.