Abstract

The aim of this study was to explore the functions of cerebral blood perfusion and glucose metabolism in the prefrontal lobe of patients with major depression disorder (MDD), and to analyze the correlations between these functional changes and depressive symptoms. 3D-arterial spin labeling (ASL) and 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) were successfully performed in 17 patients with MDD and 16 healthy controls in a resting state. The depressive symptoms of the patients were classified into seven factors and scored with the Hamilton Depression Rating Scale. Regional cerebral blood flow (CBF) values and standardized uptake values (SUV) of 18F-FDG in the whole brain were respectively compared between the patients and healthy controls using a two-sample t-test, and the correlations between the CBF and SUV in the prefrontal cerebral regions with the patients' Hamilton scores were evaluated using Pearson correlation analysis. Decreased regional CBF was indicated in the bilateral middle and the right superior frontal gyri, and decreased regional SUV was indicated in the bilateral superior, middle and inferior frontal gyri in the MDD patients compared with the controls. Positive correlations were observed between CBF values and aggregate Hamilton scores in the left middle and right middle frontal gyri of the patients. Positive correlations were also observed between SUVs and aggregate Hamilton scores in the left middle and right middle frontal gyri. 18F-FDG PET/CT was indicated to be more sensitive than 3D-ASL in identifying the functional abnormalities in the prefrontal lobe. Decreased CBF and SUV in the prefrontal lobe were closely correlated with Hamilton score. The left middle frontal gyrus may be a key functional region in MDD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call