Abstract

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a special subset of retinal output neurons capable of detecting and responding to light via a unique photopigment called melanopsin. Melanopsin activation is essential to a wide array of physiological functions, especially to those related to non-image-forming vision. Since ipRGCs only constitute a very small proportion of retinal ganglion cells, targeted recording of melanopsin-driven responses used to be a big challenge to vision researchers. Multielectrode array (MEA) recording provides a noninvasive, high throughput method to monitor melanopsin-driven responses. When synaptic inputs from rod/cone photoreceptors are silenced with glutamatergic blockers, extracellular electric signals derived from melanopsin activation can be recorded from multiple ipRGCs simultaneously by tens of microelectrodes aligned in an array. In this chapter we describe how our labs have approached MEA recording of melanopsin-driven light responses in adult mouse retinas. Instruments, tools and chemical reagents routinely used for setting up a successful MEA recording are listed, and a standard experimental procedure is provided. The implementation of this technique offers a useful paradigm that can be used to conduct functional assessments of ipRGCs and NIF vision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.