Abstract

AbstractExperimentally, the functional assessment of amino acid side chains in proteins is carried out by comparing parameters such as binding constants for the wild‐type protein and a mutant protein in which the considered side chain is deleted. In the present study, we apply a density functional theory (DFT) methodology to obtain changes in binding energy upon mutations in the enzyme ribonuclease T1. Mutant structures were either taken directly from crystallographic data (“in vivo”) allowing for conformational changes upon mutation, or derived from the wild‐type (“in silico”). Excluding entropic contributions, the computed interaction energy changes upon mutation in vivo correlate qualitatively well with experimental binding free energy changes. In contrast, the in silico approach does not perform as well, especially for residues that contribute largely to binding. Subsequently, we assessed the applicability of the in vivo approach by analyzing the functional cooperativity between pairs of side chains. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.