Abstract

Computed tomographic (CT) angiography is an important tool for the evaluation of coronary artery disease but often correlates poorly with myocardial ischemia. Current dynamic CT perfusion techniques can assess ischemia but have limited accuracy and deliver high radiation dose. Therefore, an accurate, low-dose, dynamic CT perfusion technique is needed. A total of 20 contrast-enhanced CT volume scans were acquired in 5 swine (40±10 kg) to generate CT angiography and perfusion images. Varying degrees of stenosis were induced using a balloon catheter in the proximal left anterior descending coronary artery, and a pressure wire was used for reference fractional flow reserve (FFR) measurement. Perfusion measurements were made with only 2 volume scans using a new first-pass analysis (FPA) technique and with 20 volume scans using an existing maximum slope model (MSM) technique. Perfusion (P) and FFR measurements were related by PFPA=1.01 FFR-0.03 (R2=0.85) and PMSM=1.03 FFR-0.03 (R2=0.80) for FPA and MSM techniques, respectively. Additionally, the effective radiation doses were calculated to be 2.64 and 26.4 mSv for FPA and MSM techniques, respectively. A new FPA-based dynamic CT perfusion technique was validated in a swine animal model. The results indicate that the FPA technique can potentially be used for improved anatomical and functional assessment of coronary artery disease at a relatively low radiation dose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.