Abstract

The major limitation in the synthetic application of two-component Baeyer-Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.