Abstract

Cyclooxygenase-2 (COX-2) expression is regulated at the levels of messenger RNA (mRNA) stability and translation by AU-rich elements (ARE) located in its 3' untranslated region (3'UTR). Although structurally homologous RNA binding proteins HuR and CUGBP2 stabilize COX-2 mRNA, HuR induces whereas CUGBP2 inhibits COX-2 mRNA translation. This study aimed to determine the antagonism between these proteins on COX-2 expression. COX-2 ARE binding activity was determined by nitrocellulose filter binding and UV cross-linking assays using recombinant glutathione S-transferase (GST)/HuR and GST/CUGBP2. Protein:protein interactions were determined by GST pull-down, yeast 2-hybrid, and immunocytochemistry assays. Nucleocytoplasmic shutting was determined by heterokaryon analyses. The effect of CUGBP2 and HuR on COX-2 ARE-dependent translation was shown by a chimeric luciferase mRNA containing COX-2 3'UTR. HT-29 cells were subjected to 12 Gy gamma-irradiation in a cesium irradiator. CUGBP2 and HuR bind with similar affinities to COX-2 ARE, but CUGBP2 competes with HuR for binding. In vitro, HuR and CUGBP2 heterodimerize. Furthermore, FLAG-tagged HuR and myc-tagged CUGBP2 colocalize in the nucleus of HCT-116 cells. Moreover, both proteins shuttled between the nucleus and cytoplasm. In vitro, HuR enhanced whereas CUGBP2 inhibited translation of the chimeric luciferase COX-2 3'UTR mRNA. Furthermore, CUGBP2 competitively inhibited HuR-mediated translation of the transcript. In HT-29 cells transfected with HuR and CUGBP2, a switch in COX-2 mRNA binding from predominantly HuR to CUGBP2 occurred after radiation treatment, which was coupled with increased silencing of the COX-2 mRNA. CUGBP2 overrides HuR and suppresses COX-2 mRNA translation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call