Abstract

Methanothermobacter thermautotrophicus ΔH (MTH) is a potential methanogen known to reduce CO2 with H2 for producing methane biofuel in thermophilic digesters. The genome of this organism contains ~50.5% conserved hypothetical proteins (HPs; operome) whose function is still not determined precisely. Here, we employed a combined bioinformatics approach to annotate a precise function to HPs and categorize them as enzymes, binding proteins, and transport proteins. Results of our study show that 315 (35.6%) HPs have exhibited well-defined functions contributing imperative roles in diverse cellular metabolism. Some of them are responsible for stress-response mechanisms and cell cycle, membrane transport, and regulatory processes. The genome-neighborhood analysis found five important gene clusters (dsr, ehb, kaiC, cmr, and gas) involving in the energetic metabolism and defense systems. MTH operome contains 223 enzymes with 15 metabolic subsystems, 15 cell cycle proteins, 17 transcriptional regulators and 33 binding proteins. Functional annotation of its operome is thus more fundamental to a profound understanding of the molecular and cellular machinery at systems-level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.