Abstract
The ecological succession of microbes during cadaver decomposition has garnered interest in both basic and applied research contexts (e.g. community assembly and dynamics; forensic indicator of time since death). Yet current understanding of microbial ecology during decomposition is almost entirely based on plant litter. We know very little about microbes recycling carcass-derived organic matter despite the unique decomposition processes. Our objective was to quantify the taxonomic and functional succession of microbial populations in soils below decomposing cadavers, testing the hypotheses that a) periods of increased activity during decomposition are associated with particular taxa; and b) human-associated taxa are introduced to soils, but do not persist outside their host. We collected soils from beneath four cadavers throughout decomposition, and analyzed soil chemistry, microbial activity and bacterial community structure. As expected, decomposition resulted in pulses of soil C and nutrients (particularly ammonia) and stimulated microbial activity. There was no change in total bacterial abundances, however we observed distinct changes in both function and community composition. During active decay (7 - 12 days postmortem), respiration and biomass production rates were high: the community was dominated by Proteobacteria (increased from 15.0 to 26.1% relative abundance) and Firmicutes (increased from 1.0 to 29.0%), with reduced Acidobacteria abundances (decreased from 30.4 to 9.8%). Once decay rates slowed (10 - 23 d postmortem), respiration was elevated, but biomass production rates dropped dramatically; this community with low growth efficiency was dominated by Firmicutes (increased to 50.9%) and other anaerobic taxa. Human-associated bacteria, including the obligately anaerobic Bacteroides, were detected at high concentrations in soil throughout decomposition, up to 198 d postmortem. Our results revealed the pattern of functional and compositional succession in soil microbial communities during decomposition of human-derived organic matter, provided insight into decomposition processes, and identified putative predictor populations for time since death estimation.
Highlights
Decomposition of organic matter is an integral process in all ecosystems
We studied replicate human cadavers decomposing in a natural terrestrial environment at the University of Tennessee Anthropology Research Facility (ARF), a unique outdoor human decomposition laboratory
The study was conducted at The University of Tennessee Anthropology Research Facility (ARF) in Knoxville, Tennessee (35°56' 28" N, 83°56' 25" W), a 1.3 acre outdoor laboratory dedicated to the study of human decomposition
Summary
Decomposition of organic matter is an integral process in all ecosystems. Most research on terrestrial ecosystems focuses on decomposing plant litter due to its sheer dominance as an input [1]. Carcass decomposition releases a diversity of compounds into the soil, including adipose tissues, volatile fatty acids (primarily butyric and propionic acids), organic acids (e.g. acetic and oxalic acids), organic nitrogen (nucleic acids, peptides, amino acids), and phenolics [3]. This localized, ephemeral decomposition event results in a “hot spot” and “hot moment” of enhanced biogeochemical cycling in the soils below (vis a vis [4]). Understanding carcass or cadaver decomposition processes may have direct applications for forensic science [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.