Abstract

Sugar-sugar glycosyltransferases play an important role in structural diversity of small molecule glycosides in higher plants. We isolated a cDNA clone encoding a sugar-sugar glucosyltransferase (CaUGT3) catalyzing 1,6-glucosylation of flavonol and flavone glucosides for the first time from Catharanthus roseus. CaUGT3 exhibited a unique glucosyl chain elongation activity forming not only gentiobioside but also gentiotrioside and gentiotetroside in a sequential manner. We investigated the functional properties of CaUGT3 using homology modeling and site-directed mutagenesis, and identified amino acids positioned in the acceptor-binding pocket as crucial for providing enough space to accommodate flavonoid glucosides instead of flavonoid aglycones. These results provide basic information for understanding and engineering the catalytic functions of sugar-sugar glycosyltransferases involved in biosynthesis of plant glycosides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.