Abstract

BackgroundSevere cutaneous adverse drug reactions (SCARs) are a group of serious clinical conditions caused by immune reaction to certain drugs. The allelic variance of human leukocyte antigens of HLA-B*13:01 has been strongly associated with hypersensitivities induced by dapsone (DDS). T-cell receptor mediated activation of cytotoxic T lymphocytes (CTLs) has also been suggested to play an essential role in pathogenesis of SCARs. However, HLA-B*13:01-DDS-TCR immune synapse that plays role in drug-induced hypersensitivity syndrome (DIHS) associated T cells activation remains uncharacterized.MethodsTo investigate the molecular mechanisms for HLA-B*13:01 in the pathogenesis of Dapsone-induced drug hypersensitivity (DDS-DIHS), we performed crystallization and expanded drug-specific CTLs to analyze the pathological role of DDS-DIHS.ResultsResults showed the crystal structure of HLA-B*13:01-beta-2-microglobulin (β2M) complex at 1.5 Å resolution and performed mutation assays demonstrating that I118 or I119, and R121 of HLA-B*13:01 were the key residues that mediate the binding of DDS. Subsequent single-cell TCR and RNA sequencing indicated that TCRs composed of paired TRAV12-3/TRBV28 clonotype with shared CDR3 region specifically recognize HLA-B*13:01-DDS complex to trigger inflammatory cytokines associated with DDS-DIHS.ConclusionOur study identified the novel p-i-HLA/TCR as the model of interaction between HLA-B*13:01, DDS and the clonotype-specific TCR in DDS-DIHS.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call