Abstract

To investigate the role of the mediobasal hypothalamus (MBH) in diabetic gonadal axis disorders, the MBHs of adult male streptozocin-induced diabetic (STZ-D) rats were examined after incubation in basal conditions or in K+-enriched medium and compared with those of controls. Diabetes lasted 1 mo. Both luteinizing-hormone-releasing hormone (LHRH) release and MBH morphology were studied. After incubation in basal conditions, the LHRH release was unchanged. By light microscopy, the dilated-axon cross sections were more numerous (P less than .01) in the basal arcuate nucleus and in the median eminence. By electron microscopy, the ratio of exocytoses to neurosecretory granules observed in the median eminence axon cross sections was smaller (P less than .05). The total LHRH immunoreactivity, the number of labeled axons, and the amount of positive material in the axons were reduced (P less than .05). After incubation in K+-enriched medium, the LHRH release was markedly reduced (P less than .01). The number and area of dilated-axon cross sections, possibly because of the relation between exocytosis and physiological dilation, were less augmented (P less than .01). Whereas the number of exocytoses and the ratio of exocytoses to neurosecretory granules were not decreased, the total LHRH immunoreactivity and the number of labeled axons were reduced (P less than .05). The releasable LHRH pool therefore seems to be exhausted in control MBH because of long-term stimulation and reduced in the MBH of STZ-D rats because of diabetes. In conclusion, STZ-D causes functional and anatomical MBH lesions that should be pathogenetically relevant for the disorders of the gonadal axis documented in this animal model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.