Abstract

Peripheral nerve researchers frequently use the rat sciatic nerve crush as a model for axonotmesis. Unfortunately, studies from various research groups report results from different crush techniques and by using a variety of evaluation tools, making comparisons between studies difficult. The purpose of this investigation was to determine the sequence of functional and morphologic changes after an acute sciatic nerve crush injury with a non-serrated clamp, giving a final standardized pressure of p = 9 MPa. Functional recovery was evaluated using the sciatic functional index (SFI), the extensor postural thrust (EPT) and the withdrawal reflex latency (WRL), before injury, and then at weekly intervals until week 8 postoperatively. The rats were also evaluated preoperatively and at weeks 2, 4, and 8 by ankle kinematics, toe out angle (TOA), and gait-stance duration. In addition, the motor nerve conduction velocity (MNCV) and the gastrocnemius-soleus weight parameters were measured just before euthanasia. Finally, structural, ultrastructural and histomorphometric analyses were carried out on regenerated nerve fibers. At 8 weeks after the crush injury, a full functional recovery was predicted by SFI, EPT, TOA, and gait-stance duration, while all the other parameters were still recovering their original values. On the other hand, only two of the histomorphometric parameters of regenerated nerve fibers, namely myelin thickness/axon diameter ratio and fiber/axon diameter ratio, returned to normal values while all other parameters were significantly different from normal values. The employment of traditional methods of functional evaluation in conjunction with the modern techniques of computerized analysis of gait and histomorphometric analysis should thus be recommended for an overall assessment of recovery in the rat sciatic nerve crush model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call