Abstract
Behavioural sensitization is a putative mechanism in the pathophysiology of drug addiction and neuropsychiatric disorders such as schizophrenia. In rodents, drug-induced behavioural sensitization has been described for several different drug classes. The N-methyl-D-aspartate receptor antagonist MK-801 can inhibit sensitization to other drugs of abuse. However, MK-801 also produces behavioural sensitization to its own hyperlocomotor inducing effects, suggesting that MK-801 sensitization has a distinctive mechanism of action. The aim of this study was to carry out a functional and molecular analysis of the nucleus accumbens (NAc) of adult male Sprague-Dawley rats sensitized to MK-801 (seven daily injections of 0.25 mg/kg, 5 days of withdrawal and subsequent 0.25 mg/kg challenge), or following acute MK-801 (0.25 mg/kg), or naive rats as controls. Locomotor activity was the primary measure of sensitization. Ex-vivo slice electrophysiology showed a decrease in the excitatory synaptic strength in the NAc of rats sensitized to MK-801 compared with acute MK-801 treatment or naive controls. An LC-MS/MS SWATH proteomics approach showed that proteins altered by MK-801 sensitization were predominantly related to functions including calcium and glutamate signalling, and mitochondrial dysfunction. These results shed some light on neural changes in the NAc after sensitization to MK-801. This model could prove useful for studying the role of N-methyl-D-aspartate receptors in the pathophysiology of drug addiction and schizophrenia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.