Abstract
SynopsisMovement is an important component of animal behavior and determines how an organism interacts with its environment. The speed at which an animal moves through its environment can be constrained by internal (e.g., physiological state) and external factors (e.g., habitat complexity). When foraging, animals should move at speeds that maximize prey capture while minimizing mistakes (i.e., missing prey, slipping). We used experimental arenas containing obstacles spaced in different arrays to test how variation in habitat complexity influenced attack distance, prey capture speed, and foraging success in the Prairie Lizard. Obstacles spaced uniformly across arenas resulted in 15% slower prey capture speed and 30–38% shorter attack distance compared to arenas with no obstacles or with obstacles clustered in opposite corners of the arena. Prey capture probability was not influenced by arena type or capture speed, but declined with increasing attack distance. Similarly, the probability of prey consumption declined with attack distance across arena types. However, prey consumption probability declined with increasing prey capture speed in more open arenas but not in the cluttered arena. Foraging accuracy declined with increasing speed in more open arenas, and remained relatively constant when obstacles were in closer proximity. Foraging success was primarily constrained by intrinsic properties (speed-maneuverability tradeoff) when ample space was available, but environmental conditions had a greater impact on foraging success in “cluttered” habitats. This empirical test of theoretical predictions about optimal movement speeds in animals provides a step forward in understanding how animals select speeds in nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.