Abstract

Mitochondrial AOX (alternative oxidase) is the terminal oxidase of the CN (cyanide)-resistant alternative respiratory pathway in plants. To investigate the role of the tobacco AOX gene (NtAOX1a) (where Nt is Nicotiana tabacum) under deleterious conditions which could induce ROS (reactive oxygen species) accumulation, we generated and characterized a number of independent transgenic tobacco (N. tabacum) lines with altered NtAOX1a gene expression and AP (alternative pathway) capacity. AOX efficiently inhibited the production of low-temperature-induced H2O2 and might be a major enzyme for scavenging H2O2 at low temperature. Furthermore, NtAOX1a may act as a regulator of KCN-induced resistance to TMV (tobacco mosaic virus) through the regulation of H2O2. Notably, a moderate accumulation of H2O2 under the control of NtAOX1a was crucial in viral resistance. Analysis of seed germination indicated an important role for NtAOX1a in germination under H2O2-induced oxidative stress when the CP (cytochrome pathway) was inhibited. These results demonstrate that NtAOX1a is necessary for plants to survive low temperature, pathogen attack and oxidative stress by scavenging ROS under these adverse conditions when the CP is restricted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.