Abstract

Xanthomonas campestris pv. campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Its virulence relies heavily on the type III secretion system (T3SS), facilitating effector translocation into plant cells. The type III effectors (T3Es) disrupt cellular processes, promoting pathogen proliferation. However, only a few T3Es from Xcc have been thoroughly characterized. In this study, we further investigated two effectors using the T3Es-deficient mutant and the Arabidopsis protoplast system. XopE2Xcc triggers Arabidopsis immune responses via an unidentified activator of the salicylic acid (SA) signaling pathway, whereas XopLXcc suppresses the expression of genes associated with patterns-triggered immunity (PTI) and the SA signaling pathway. These two effectors exert opposing effects on Arabidopsis immune responses. Additionally, we examined the relationship between the specific domains and functions of these two effector proteins. Our findings demonstrate that the N-myristoylation motif and N-terminal domain are essential for the subcellular localization and virulence of XopE2Xcc and XopLXcc, respectively. These novel insights enhance our understanding of the pathogenic mechanisms of T3Es and contribute to developing effective strategies for controlling bacterial disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.