Abstract
Matrix attachment regions (MARs) are binding sites for nuclear scaffold proteins in vitro, and are proposed to mediate the attachment of chromatin to the nuclear scaffold in vivo. Previous reports suggest that MAR elements may stabilize transgene expression. Here, we tested the effects of two maize MAR elements (P-MAR from the P1-rr gene, and Adh1-MAR from the adh1 gene) on the expression of a gusA reporter gene driven by three different promoters: the maize p1 gene promoter, a wheat peroxidase (WP) gene promoter, or a synthetic promoter (Rsyn7). The inclusion of P-MAR or Adh1-MAR on P::GUS transgene constructs did not reduce variation in the levels of GUS activity among independent transformation events, nor among the progeny derived from each event. The Adh1-MAR element did not affect GUS expression driven by the WP promoter, but did modify the spatial pattern of expression of the Rsyn7::GUS transgene. These results indicate that, in transgenic maize plants, the effects of MAR elements can vary significantly depending upon the promoter used to drive the transgene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.