Abstract

Autophagy is a highly conserved degradation system in eukaryotes. Selective autophagy is used for the degradation of selective cargoes. Selective autophagic processes of yeast include pexophagy, mitophagy, and cytoplasm-to-vacuole targeting (Cvt) pathway in which particular vacuolar proteins, such asaminopeptidase I (Ape1), are selectively transported to vacuoles. However, the physiological role of selective autophagy remains elusive in filamentous fungi. ATG11 family proteins asa basic scaffold are essential for most selective autophagy pathways in yeast. Here, Acatg11, encoding a putative ATG11 family protein, was identified and cloned from the cephalosporin producing strain Acremonium chrysogenum based on the sequence similarity of ATG11 superfamily proteins. Disruption of Acatg11 inhibited the maturation of preApe1 during fermentation indicating that Acatg11 is involved in Cvt pathway. In addition, pexophagy and mitophagy were blocked in the Acatg11 disruption mutant (ΔAcatg11). Intriguingly, the nonselective autophagy was deficient in ΔAcatg11 under starvation induction or during fermentation. Disruption of Acatg11 significantly enhanced fungal conidiation, but reduced cephalosporin production. These results indicated that Acatg11 is required for both selective and nonselective autophagy during fermentation and has a strong impact on morphological differentiation and cephalosporin production of A. chrysogenum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call