Abstract

Uveal melanomas are notoriously radioresistant and thus necessitate treatment with extremely high radiation doses that often cause ocular complications. The p53 tumor suppressor pathway is a major mediator of the cellular response to radiation-induced DNA damage, suggesting that this pathway may be defective in uveal melanoma. The current study was conducted to analyze the functional integrity of the p53 pathway in primary uveal melanoma cells. The p53 gene was sequenced in three primary uveal melanoma cells lines. Cultured primary uveal melanoma cells (MM28, MM50, Mel202, Mel270, and Mel290), MCF7 breast carcinoma cells, normal uveal melanocytes (UM47), and normal human diploid fibroblasts (NHDFs) were irradiated at 250 kVp and 12 mA at a dose rate of 1.08 Gy/min for a total dose of up to 20 Gy. Cell viability was analyzed with trypan blue exclusion. Western blot analysis was used to analyze the expression of p53, p53-phospho-Ser15, p21, Bax, PUMA, and Bcl-x(L). No p53 gene mutations were found in MM28, MM50, or Mel270 cells. Upstream signaling to p53 was intact, with normal induction of p53 and phosphorylation of p53-Ser15, in all five cell lines. Radiation-induced downstream activation of p21 was defective in MM28 and MM50 cells, and activation of Bax was defective in MM50 and Mel290 cells. MM28, MM50, and Mel202 cells failed to deamidate Bcl-x(L) in response to radiation-induced DNA damage. Overall, four of the five uveal melanoma cell lines exhibited at least one downstream defect in the p53 pathway. Expression of p53 and upstream signaling to p53 in response to radiation-induced DNA damage appear to be intact in most uveal melanomas. In contrast, functional defects in the p53 pathway downstream of p53 activation appear to be common. Further elucidation of p53 pathway abnormalities in uveal melanoma may allow therapeutic interventions to increase the radiosensitivity of the tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.