Abstract

We determined the effect of various Bacillus subtilis dna(Ts) mutations on pUB110 and chromosomal replication. Leading strand DNA synthesis of pUB110, starting by a nick at the plasmid replication origin (oriU), is performed by DNA polymerase III, since replication is blocked at non-permissive temperature in thermosensitive mutants dnaD, dnaF, dnaH and dnaN known to cause thermosensitivity of the various subunits of DNA polymerase III. When the lagging strand origin (oriL) is exposed, the DnaG protein (DNA primase) alone, or in association with unknown protein(s) binds asymmetrically to oriL to form a primer that is also extended by DNA polymerase III. In oriL- plasmids like pBT32, leading and lagging strand DNA syntheses are decoupled from each other. The DnaB protein, that is not required for pUB110 replication, may be associated with priming at a second unidentified lagging strand origin on pBT32. At non-permissive temperature, the dnaC30 and dnaI2 mutations affect both pUB110 and chromosomal DNA synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.