Abstract

The Caenorhabditis elegans UNC-73B protein regulates axon guidance through its ability to act as a guanine nucleotide exchange factor (GEF) for the CeRAC/MIG-2 GTPases. Like other GEFs for Rho family GTPases, UNC-73B has a Dbl homology (DH) catalytic domain, followed by a C-terminal pleckstrin homology (PH) domain. We have explored whether the PH domain cooperates with the adjacent DH domain to promote UNC-73B GEF activity and axonal pathfinding. We show that the UNC-73B PH domain binds preferentially to monophosphorylated phosphatidylinositides in vitro. Replacement of residues Lys1420 and Arg1422 with Glu residues within the PH domain impaired this phospholipid binding but did not affect the in vitro catalytic activity of the DH domain. In contrast, a mutant UNC-73B protein with a Trp1502-to-Ala substitution in the PH domain still interacted with phosphorylated phosphatidylinositides but had lost its GEF activity. UNC-73B minigenes containing these mutations were microinjected into C. elegans and transferred to unc-73(e936) mutant worms. Unlike the wild-type protein, neither PH domain mutant was able to rescue the unc-73 axon guidance defect. These results suggest that the UNC-73B PH domain plays distinct roles in targeting and promoting GEF activity towards the Rac GTPase, both of which are important for the directed movements of motorneurons in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.