Abstract
Cleidocranial dysplasia (CCD) is an inherited autosomal-dominant skeletal disease caused by heterozygous mutations in the osteoblast-specific transcription factor, RUNX2. We have performed mutational analysis of RUNX2 on 24 unrelated patients with CCD. In 17 patients, 16 distinct mutations were detected in the coding region of RUNX2: 4 frameshift, 3 nonsense, 6 missense, and 2 splicing mutations alongside one polymorphism. The missense mutations were all clustered within the Runt domain and their protein products showed neither DNA binding nor transactivation. On the other hand, some mutant RUNX2 had the Runt domain intact and remained partially competent for transactivation. Coincidentally, one important phenotype of CCD, the short stature, was significantly milder in the patients with the intact Runt domain than those without. Furthermore, a remarkable correlation was found between the short stature and the number of supernumerary teeth. On the other hand, the classic CCD phenotype, hypoplastic clavicles or open fontanelles, was invariably observed regardless of the degree of short stature or supernumerary teeth. Overall, these results suggest that CCD could result from a much smaller loss in the RUNX2 function than envisioned on the basis of the conventional haploinsufficiency model. This makes an interesting contrast to the case of familial and sporadic leukemias mediated by RUNX1 mutations, in which mutants acting in a dominant negative manner have been suggested to confer a higher propensity to develop leukemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.