Abstract

Citrus bacterial canker disease, caused by Xanthomonas citri subsp. citri (Xcc), poses a significant global threat to the citrus industry. Lateral organ boundaries 1 (Lob1) is confirmed as a citrus susceptibility gene that induces pathogenesis by interaction with the PthA4 effector of Xcc. Citron C-05 (Citrus medica) is a Citrus genotype resistant to Xcc. However, there is little information available on the regulation of Lob1 in resistant genotypes, which is important for the breeding of citrus cultivars resistant to canker disease. This study aimed to identify upstream regulatory factors of Lob1 in Citron C-05 and to investigate its function in disease resistance. ‘Bingtang’ sweet orange (C. sinensis), a susceptible genotype, was utilized as the control. cDNA yeast libraries of Xcc-induced Citron C-05 and ‘Bingtang’ sweet orange were constructed. The capacities of ‘Bingtang’ and Citron C-05 were 1.896 × 107 and 2.154 × 107 CFU, respectively. The inserted fragments ranged from 500 to 2000 bp with a 100% recombination rate. The promoter of Lob1 was segmented into two pieces and the P1 fragment from both genotypes was used to construct a bait yeast (PAbAi-CsLob1-P1; PAbAi-CmLob1-P1). Through library screening with the bait yeast, upstream regulators interacting with the Lob1-P1 promoter were identified and then validated using Y1H and dual-luciferase tests. The expression analysis of the three transcript factors indicated that RMA3 was upregulated by inoculation with Xcc in the resistant Citron C-05, but not in the susceptible sweet orange. The overexpression of CsRMA3 in ‘Bingtang’ sweet orange led to reduced canker symptoms, with a significantly lower pathogen density in the leaves following Xcc inoculation. When CmRMA3 was silenced by virus-induced gene silencing (VIGS) in Citron C-05, typical canker symptoms appeared on the CmRMA3-silenced leaves at 15 days post-inoculation with Xcc. Further expression analyses revealed that the CmRMA3 transcription factor suppressed the expression of Lob1. These results suggest that RMA3 participates in the resistant reaction of Citron C-05 to Xcc infection, and such a response might be in relation to its suppression of the expression of the pathogenic gene Lob1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call