Abstract

The PKD1 protein, polycystin-1, is a large transmembrane protein of uncertain function and topology. To study the putative functions of polycystin-1, conditionally immortalized kidney cells transgenic for PKD1 were generated and an interaction between transgenic polycystin-1 and endogenous polycystin-2 has been recently demonstrated in these cells. This study provides the first functional evidence that transgenic polycystin-1 directly mediates cell-cell adhesion. In non-permeabilized cells, polycystin-1 localized to the lateral cell borders with N-terminal antibodies but not with a C-terminal antibody; there was a clear difference in surface intensity between transgenic and non-transgenic cells. Compared with non-transgenic cells, transgenic cells showed a dramatic increase in resistance to the disruptive effect of a polycystin-1 antibody raised to the PKD domains of polycystin-1 (IgPKD) in both cell adhesion and cell aggregation assays. The differential effect on cell adhesion between transgenic and non-transgenic cells could be reproduced using recombinant fusion proteins encoding non-overlapping regions of the IgPKD domains. In contrast, antibodies raised to other extracellular domains of polycystin-1 had no effect on cell adhesion. Finally, the specificity of this finding was confirmed by the lack of effect of IgPKD antibody on cell adhesion in a PKD1 cystic cell line deficient in polycystin-1. These results demonstrate that one of the primary functions of polycystin-1 is to mediate cell-cell adhesion in renal epithelial cells, probably via homophilic or heterophilic interactions of the PKD domains. Disruption of cell-cell adhesion during tubular morphogenesis may be an early initiating event for cyst formation in ADPKD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call