Abstract

Warner–Bratzler shear force (WBSF) and % intramuscular fat content (IMF) are objective meat quality measurements that are significantly correlated with aspects of palatability such as tenderness, flavour and juiciness. Using cDNA microarrays, Musculus longissimus transcriptomic profiles at slaughter were compared in samples displaying lower or higher IMF (n=8) and WBSF values on day 1 post mortem (n=8). 101 identified genes were differentially expressed in relation to WBSF, while 160 genes were associated with differences in IMF. Reduced expression of protein synthesis genes and enhanced expression of genes involved in protein degradation were associated with lower WBSF values on day 1. Pathways including oxidative phosphorylation and the citrate cycle were significantly associated with higher IMF. Many lipid oxidation and fatty acid metabolism pathway genes were down-regulated in high IMF tissue, suggesting a suppression of fatty acid turnover in muscle with higher fat content. Identified genes provide targets for the discovery of novel genetic variation influential on pork palatability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call