Abstract

Metal-responsive transcription factor-1 (MTF-1) and metallothionein (MT) expression are involved in metal homeostasis and detoxification. Here, we characterized the structure and functions of mtf-1 and mt promoters in yellow catfish Pelteobagrus fulvidraco. Many important binding sites of transcriptional factors, such as heat shock promoter element (HSE) and metal responsive element (MRE), were predicted on their promoter regions. Cu did not significantly influence the activity of mtf-1 promoter, but Zn increased its promoter activity. Cu and Zn induced the increase of mt promoter activity. HSE site of mtf-1 promoter was the functional binding locus responsible for Zn-induced mtf-1 transcriptional activation. Zn and Cu induced transcriptional activation of mt gene through the MTF-1- and MRE-dependent pathway. Using primary hepatocytes of yellow catfish, we found that Cu and Zn induced the mt expression; Cu did not significantly influence the mRNA and total protein levels of MTF-1, but Zn up-regulated its mRNA and total protein expression. Both Zn and Cu treatment also up-regulated MTF-1 nuclear protein expression, which in turn increased the mt expression. Taken together, these findings delineated the transcriptional regulation of MT and MTF-1 under Zn or Cu treatments, and provided some mechanisms for the regulation of Cu and Zn homeostasis in vertebrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call