Abstract

Methylcrotonylglycinuria (MCG; MIM 210200) is an autosomal recessive inherited human disorder caused by the deficiency of 3-methylcrotonyl-CoA carboxylase (MCC, E.C.6.4.1.4), involved in leucine catabolism. This mitochondrial enzyme is one of the four biotin-dependent carboxylases known in humans. MCC is composed of two different types of subunits, α and β, encoded by the nuclear genes MCCA and MCCB, respectively, recently cloned and characterized. Several mutations have been identified, in both genes, the majority are missense mutations along with splicing mutations and small insertions/deletions. We have expressed four missense mutations, two MCCA and two MCCB mapping to highly evolutionarily conserved residues, by transient transfection of SV40-transformed deficient fibroblasts in order to confirm their pathogenic effect. All the missense mutations expressed resulted in null or severely diminished MCC activity providing direct evidence that they are disease-causing ones. The MCCA mutations have been analysed in the context of three-dimensional structural information modelling the changes in the crystallized biotin carboxylase subunit of the Escherichia coli acetyl-CoA carboxylase. The apparent severity of all the MCC mutations contrasts with the variety of the clinical phenotypes suggesting that there are other cellular and metabolic unknown factors that affect the resulting phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.