Abstract

BackgroundSugarcane is an important sugar and economic crop in the world. Ratoon stunting Disease (RSD) of sugarcane, caused by Leifsonia xyli subsp. xyli, is widespread in countries and regions where sugarcane is grown and also limited to sugarcane productivity. Although the whole genome sequencing of Leifsonia xyli subsp. xyli was completed, progress in understanding the molecular mechanism of the disease has been slow because it is difficult to grow in culture.ResultsThe Leifsonia xyli subsp. xyli membrane protein gene Lxx18460 (anti-sigma K) was cloned from the Lxx-infected sugarcane cultivar GT11 at the mature stage using RT-PCR technique, and the gene structure and expression in infected sugarcane were analyzed. The Lxx18460 gene was transformed into Nicotiana tabacum by Agrobacterium tumefaciens-mediation. The transgenic tobacco plants overexpressing Lxx18460 had lower levels in plant height, leaf area, net photosynthetic rate and endogenous hormones of IAA, ABA and GA3, as well as lower activities of three antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than the wild type (WT) tobacco. With the plant growth, the expression of Lxx18460 gene and protein was increased. To better understand the regulation of Lxx18460 expression, transcriptome analysis of leaves from transgenic and wild type tobacco was performed. A total of 60,222 all-unigenes were obtained through BGISEQ-500 sequencing. Compared the transgenic plants with the WT plants, 11,696 upregulated and 5949 downregulated genes were identified. These differentially expressed genes involved in many metabolic pathways including signal transduction, biosynthesis of other secondary metabolism, carbohydrate metabolism and so on. Though the data presented here are from a heterologous system, Lxx 18460 has an adverse impact on the growth of tobacco; it reduces the photosynthesis of tobacco, destroys the activity of defense enzymes, and affects the levels of endogenous hormones, which indicate that Lxx18460 may act important roles in the course of infection in sugarcane.ConclusionsThis is the first study on analyzing the function of the membrane protein gene Lxx18460 of anti-sigma K (σK) factor in Leifsonia xyli subsp. xyli. Our findings will improve the understanding of the interaction between the RSD pathogen Leifsonia xyli subsp. xyli and sugarcane. The output of this study will also be helpful to explore the pathogenesis of RSD.

Highlights

  • Sugarcane is an important sugar and economic crop in the world

  • The results of functional analysis of Lxx18460 using software of SMART and Motif Scan showed that the Lxx18460 protein domain located at the 43–238 position is RskA family

  • BLAST analysis indicated that Lxx18460 had 34% identity to Arthrobacter arilaitensis, 42% to marine actinobacterium PHSC20C1, 41% to Microbacterium testaceum, and 39% to Clavibacter michiganensis subsp. michiganensis, respectively

Read more

Summary

Introduction

Sugarcane is an important sugar and economic crop in the world. Ratoon stunting Disease (RSD) of sugarcane, caused by Leifsonia xyli subsp. xyli, is widespread in countries and regions where sugarcane is grown and limited to sugarcane productivity. Ratoon stunting Disease (RSD) of sugarcane, caused by Leifsonia xyli subsp. The whole genome sequencing of Leifsonia xyli subsp. Ratoon stunting disease (RSD), caused by a nutritionally fastidious Gram-positive bacterium Xyli – Lxx), is widespread in worldwide sugarcane production areas [3, 4] and responsible for substantial losses in yield [5,6,7,8]. RSD control measures include meristem tissue culture, sterilization of harvesting and planting equipment and seedcane heat treatment. All of these measures have limited efficacy, RSD persists in sugarcane as a major threat to sugar industry. No any definite disease-causing gene has been found up to now

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call