Abstract

SummaryThe T rypanosoma brucei aminopurine transporter P2/TbAT1 has long been implicated in the transport of, and resistance to, the diamidine and melaminophenyl arsenical classes of drugs that form the backbone of the pharmacopoeia against African trypanosomiasis. Genetic alterations including deletions and single nucleotide polymorphisms (SNPs) have been observed in numerous strains and clinical isolates. Here, we systematically investigate each reported mutation and assess their effects on transporter function after expression in a tbat1 −/− T . brucei line. Out of a set of six reported SNPs from a reported ‘resistance allele’, none significantly impaired sensitivity to pentamidine, diminazene or melarsoprol, relative to the TbAT 1‐WT allele, although several combinations, and the deletion of the codon for residue F316, resulted in highly significant impairment. These combinations of SNPs, and ΔF316, also strongly impaired the uptake of [3 H]‐adenosine and [3 H]‐diminazene, identical to the tbat1 −/− control. The TbAT1 protein model predicted that residues F19, D140 and F316 interact with the substrate of the transporter. Mutation of D140 to alanine resulted in an inactive transporter, whereas the mutation F19A produced a transporter with a slightly increased affinity for [3 H]‐diminazene but reduced the uptake rate. The results presented here validate earlier hypotheses of drug binding motifs for TbAT1.

Highlights

  • African trypanosomiasis is a disease complex covering a number of severe human and veterinary conditions, caused by Trypanosoma brucei gambiense and T. b. rhodesiense, and T. b. brucei, T. congolense and T. vivax respectively

  • The Trypanosoma brucei aminopurine transporter P2/TbAT1 has long been implicated in the transport of, and resistance to, the diamidine and melaminophenyl arsenical classes of drugs that form the backbone of the pharmacopoeia against African trypanosomiasis

  • The TbAT1 protein model predicted that residues F19, D140 and F316 interact with the substrate of the transporter

Read more

Summary

Summary

The Trypanosoma brucei aminopurine transporter P2/TbAT1 has long been implicated in the transport of, and resistance to, the diamidine and melaminophenyl arsenical classes of drugs that form the backbone of the pharmacopoeia against African trypanosomiasis. Tamidine, diminazene or melarsoprol, relative to the TbAT1-WT allele, several combinations, and the deletion of the codon for residue F316, resulted in highly significant impairment. These combinations of SNPs, and ΔF316, strongly impaired the uptake of [3H]-adenosine and [3H]-diminazene, identical to the tbat1−/− control. The TbAT1 protein model predicted that residues F19, D140 and F316 interact with the substrate of the transporter. The results presented here validate earlier hypotheses of drug binding motifs for TbAT1

Introduction
Results and discussion
Experimental procedures
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.