Abstract

BackgroundPlants have evolved light sensing mechanisms to optimally adapt their growth and development to the ambient light environment. The COP1/SPA complex is a key negative regulator of light signaling in the well-studied dicot Arabidopsis thaliana. COP1 and members of the four SPA proteins are part of an E3 ubiquitin ligase that acts in darkness to ubiquitinate several transcription factors involved in light responses, thereby targeting them for degradation by the proteasome. While COP1 is also found in humans, SPA proteins appear specific to plants. Here, we have functionally addressed evolutionary conservation of COP1 and SPA orthologs from the moss Physcomitrella, the monocot rice and the dicot Arabidopsis.ResultsTo this end, we analyzed the activities of COP1- and SPA-like proteins from Physcomitrella patens and rice when expressed in Arabidopsis. Expression of rice COP1 and Physcomitrella COP1 protein sequences predominantly complemented all phenotypic aspects of the viable, hypomorphic cop1-4 mutant and the null, seedling-lethal cop1-5 mutant of Arabidopsis: rice COP1 fully rescued the constitutive-photomorphogenesis phenotype in darkness and the leaf expansion defect of cop1 mutants, while it partially restored normal photoperiodic flowering in cop1. Physcomitrella COP1 partially restored normal seedling growth and flowering time, while it fully restored normal leaf expansion in the cop1 mutants. In contrast, expression of a SPA ortholog from Physcomitrella (PpSPAb) in Arabidopsis spa mutants did not rescue any facet of the spa mutant phenotype, suggesting that the PpSPAb protein is not functionally conserved or that the Arabidopsis function evolved after the split of mosses and seed plants. The SPA1 ortholog from rice (OsSPA1) rescued the spa mutant phenotype in dark-grown seedlings, but did not complement any spa mutant phenotype in light-grown seedlings or in adult plants.ConclusionOur results show that COP1 protein sequences from Physcomitrella, rice and Arabidopsis have been functionally conserved during evolution, while the SPA proteins showed considerable functional divergence. This may - at least in part - reflect the fact that COP1 is a single copy gene in seed plants, while SPA proteins are encoded by a small gene family of two to four members with possibly sub- or neofunctionalized tasks.

Highlights

  • Plants have evolved light sensing mechanisms to optimally adapt their growth and development to the ambient light environment

  • There are two predicted rice SPA proteins of which each groups with one subclass from Arabidopsis (AtSPA1/2, AtSPA3/4) (Figure 1; Additional file 1: Figure S1A, B), evidencing that two paralogs were already present in the last common ancestor of monocots and dicots

  • Similar to Arabidopsis SPA proteins, the kinase-like domains from rice and Physcomitrella SPA proteins share only limited sequence conservation with bona fide Ser/Thr kinase consensus motifs because amino acid residues that are normally highly conserved in Ser/Thr kinases are not conserved in PpSPA and OsSPA proteins

Read more

Summary

Introduction

Plants have evolved light sensing mechanisms to optimally adapt their growth and development to the ambient light environment. COP1 and members of the four SPA proteins are part of an E3 ubiquitin ligase that acts in darkness to ubiquitinate several transcription factors involved in light responses, thereby targeting them for degradation by the proteasome. Since plants use sunlight as their primary source of energy they have evolved mechanisms of light sensing in order to optimally adjust their growth and development . Light-adapted responses are obvious during seedling growth. Light-grown seedlings, in contrast, are green and exhibit a short hypocotyl, open, expanded and green cotyledons and no apical hook. Plants have several classes of photoreceptors: the red (R) and far-red (FR) sensing phytochromes, the blue (B)/UV-A responsive cryptochromes, phototropins and ZEITLUPE family members and the recently identified UV-B sensing UV-RESISTANCE LOCUS 8 (UVR8) protein [3,4,5,6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.