Abstract
Fluorochromed heavy meromyosin (TRITC-HMM) was microinjected as a molecular probe into small sandwich-plasmodia of Physarum polycephalum with the aim to demonstrate the spatial morphology and to analyze the dynamic activity of the fibrillar actin system in the living state. The plasmodia display different fibrillar organizations with a polygonal arrangement in the front region (FR) and a parallel or helical arrangement along protoplasmic veins in the intermediate (IR) and uroid region (UR). Quantitative evaluations by measuring the total length, lifetime, dynamic activity, long-term stability and optical density of fibrils reveal distinct differences between the three plasmodial regions: The total length (FR = 27.1 ± 18.5 μm, IR = 24.8 ± 12.9 μm, UR= 12.3 ± 4.7 μm), the lifetime (FR = 12.2 ± 3.4 min, IR=10.5 ± 3.7 min, UR = 6.0 ± 3.4 min), and the dynamic activity as measured in length changes per min (FR = 17.9 ± 11.3 μm, IR = 13.1 ± 3.9 μm, UR = 8.3 ± 3.9 μm) distinctly decrease from the front to the uroid region. On the other hand, the greatest stability as determined by lifetime changes in length (FR = -2.4 ± 16.2 μm, IR = 0.3 ± 10.1 μm, UR = -6.6 ± 8.9 μm) and the highest optical density as expressed in grey-values (FR = 57.0 ± 14.1 gv, IR = 115.6 ± 26.1 gv, UR 62.5 ± 8.1 gv) were found for actomyosin fibrils of the intermediate region. The morphological and physiological data of the present paper are discussed with respect to the biological significance of the fibrillar microfilament system in Physarum polycephalum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.