Abstract

Heavy metals and pesticides represent prominent sources of pollution in the natural habitat of Apis cerana cerana, potentially endangering their health through the induction of oxidative stress reactions. This study aimed to address this issue by isolating AccCDK2-like and AccCINP-like proteins from Apis cerana cerana and investigating their functional roles in honey bee resistance against pesticide and heavy metal stresses. Bioinformatics analysis revealed significant homology of these proteins with those found in other species. Functional studies confirmed their participation in interaction with each other, alongside demonstrating distinct patterns of expression and localization. Specifically, AccCDK2-like exhibited higher expression levels in prepupae and muscle tissues, while AccCINP-like showed maximal expression in brown pupae and abdomen. Furthermore, the expression levels of these proteins were found to be modulated in response to pesticide and heavy metal stresses. Notably, overexpression of AccCDK2-like and AccCINP-like led to a noticeable alteration in E. coli's ability to withstand external stresses. Additionally, silencing of the AccCDK2-like and AccCINP-like genes resulted in a significant reduction in antioxidant enzyme activity and the expression levels of genes related to antioxidant function. Consequently, the mortality rate of Apis cerana cerana under pesticide and heavy metal stresses conspicuously increased. Hence, our findings suggest that AccCDK2-like and AccCINP-like proteins potentially play a crucial role in the response of Apis cerana cerana to pesticide and heavy metal stress, likely by modulating the antioxidant pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call