Abstract

A 1,482-bp promoter sequence of the cotton cellulose synthase gene (GhCesA4) was isolated from Chinese cultivar CRI12 of Gossypium hirsutum, and transcriptionally fused to a beta-glucuronidase (GUS) reporter gene for investigation of important regions controlling gene expression in transgenic tobacco plants. Histochemical staining showed that the full-length promoter directs efficient expression of the reporter gene in the roots, hypocotyls, vascular tissues of stems, trichomes, the central leaf veins, as well as in the anthers and pollen. Quantitative measurements of GUS activity demonstrated that higher expression levels were detected in the stems, fully expanded leaves, and styles of flowers. A series of 5' progressive deletions of the promoter revealed the presence of a negative regulatory region (-767 to -424) for promoter activity and a 247-bp fragment (-247 to -1) with the vascular tissue specificity of the basic transcription activity in the GhCesA4 promoter. Exposure of the transgenic tobacco to various abiotic stresses showed that the full-length construct predominantly responded to NAA, kinetin, and sugar. Furthermore, the NAA-response region was found to be located in the -1,482/-1204 fragment, while the element(s) for the sucrose-responsive expression may be present in the -247/-1 region in the GhCesA4 promoter. These findings will not only contribute to an explanation of the molecular mechanisms by which GhCesA4 participates in secondary cell wall morphogenesis and stress responses, but will also provide a good candidate for expression or accumulation of foreign genes of interest whose products are preferentially required in vascular tissues and are inducible under auxin treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.