Abstract

We have investigated the mechanism of action of SWITCH1/DYAD (SWI1), an important regulator of plant meiosis in Arabidopsis that is required for meiotic chromosome organization including maintenance of sister chromatid cohesion. The central portion of SWI1 contains a domain of unknown function that shows strong conservation between SWI1 and its orthologs in maize and rice and is also found in paralogs including MALE MEIOCYTE DEATH 1 (MMD1). In order to examine the role of this domain we performed domain swap experiments into SWI1 in a swi1 mutant background. Domain swap analysis revealed functional conservation of the central domain between SWI1 and its orthologs but not with the domain from MMD1 suggesting that the domain plays an important role in SWI1 function that has been conserved in orthologs and diverged in paralogs in plant evolution. Analysis of expression of the non-complementing MMD1 domain swap SWI1(DSMMD1)::GFP transgenic lines revealed an altered pattern of expression that suggests a role for SWI1 in commitment to female meiocyte differentiation and meiosis. The results suggest that SWI1 may also play a developmental role as an identity determinant in the female germ cell lineage in addition to its known role in meiotic chromosome organization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call