Abstract

The Pax-5 gene plays a central role in B cell development, activation, and differentiation. At least four different isoforms have been identified, of which isoform Pax-5a has been extensively studied, while functions for alternative isoforms were previously unknown. Here, using a transient transfection system, we provide evidence that alternative isoform Pax-5d acts as a dominant-negative regulator by suppressing activity of Pax-5a in a dose-dependent manner. In contrast, co-expression in the presence of alternative isoform Pax-5e causes an increase in Pax-5a activity. Protein studies on Pax-5e using Western blot analysis revealed that this 19-kDa isoform migrates as a 27-kDa species on SDS-polyacrylamide electrophoresis gels, while a mutant Pax-5e form in which a C-terminal cysteine residue has been mutated, runs at the expected 19 kDa. Using both Western blot and immunoprecipitation assays, we further provide evidence that this size discrepancy may be caused by a tight association between Pax-5e and a thioredoxin-like factor. Comparison of various B cell lines as well as resting and lipopolysaccharide-activated mature B lymphocytes shows that increased B cell proliferation correlates with increased levels of Pax-5e/thioredoxin, whereas increased Pax-5d amounts correlate with inhibition of cell growth. Together, our results suggest that during activation and differentiation of B lymphocytes, Pax-5a function is modulated by two alternative spliced isoforms: the dominant negative Pax-5d isoform may mediate inhibition of Pax-5a activity in resting B cells, while alternative isoform Pax-5e associated with thioredoxin may increase Pax-5a activity through an unknown (redox) mechanism.

Highlights

  • In testis of the adult mouse [3]

  • Comparison of various B cell lines as well as resting and lipopolysaccharide-activated mature B lymphocytes shows that increased B cell proliferation correlates with increased levels of Pax-5e/thioredoxin, whereas increased Pax-5d amounts correlate with inhibition of cell growth

  • Our results suggest that during activation and differentiation of B lymphocytes, Pax-5a function is modulated by two alternative spliced isoforms: the dominant negative Pax-5d isoform may mediate inhibition of Pax-5a activity in resting B cells, while alternative isoform Pax-5e associated with thioredoxin may increase Pax-5a activity through an unknown mechanism

Read more

Summary

Introduction

In testis of the adult mouse [3]. Within the B cell lineage, Pax-5 is expressed during early stages of B cell development up to the mature B-cell, but is greatly down-regulated or absent in plasma cells [5]. Inactivation of the Pax-5 gene in mouse results in a complete block of B cell development at the pro-B cell stage, revealing the essential role of this gene in early B cell lymphopoiesis [6]. Pax-5-binding sites have been identified on the promoters of a number of B cell-specific genes (reviewed in Ref. 7). In addition to its role in B-lymphopoiesis, Pax-5 has been implicated in activation and proliferation of B lymphocytes since its decreased expression resulted in reduced numbers of cells post-activation [13]. Based on the DNA binding abilities and expression pattern of Pax-5a and -5d, we hypothesize that the two isoforms compete for DNA-binding sites and have opposite effects on transcription of target genes in vivo. A number of studies have shown clear functional significance for isoform Pax-5a [8, 18, 19], no prior work had yet

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.